1,981 research outputs found

    Photovoltaic effect in ferroelectric ceramics

    Get PDF
    The ceramic structure was simulated in a form that is more tractable to correlation between experiment and theory. Single crystals (of barium titanate) were fabricated in a simple corrugated structure in which the pedestals of the corrugation simulated the grain while the intervening cuts could be filled with materials simulating the grain boundaries. The observed photovoltages were extremely small (100 mv)

    Long-term Variability of H2_2CO Masers in Star-forming Regions

    Get PDF
    We present results of a multi-epoch monitoring program on variability of 6\,cm formaldehyde (H2_2CO) masers in the massive star forming region NGC\,7538\,IRS\,1 from 2008 to 2015 conducted with the GBT, WSRT, and VLA. We found that the similar variability behaviors of the two formaldehyde maser velocity components in NGC\,7538\,IRS\,1 (which was pointed out by Araya and collaborators in 2007) have continued. The possibility that the variability is caused by changes in the maser amplification path in regions with similar morphology and kinematics is discussed. We also observed 12.2\,GHz methanol and 22.2\,GHz water masers toward NGC\,7538\,IRS\,1. The brightest maser components of CH3_3OH and H2_2O species show a decrease in flux density as a function of time. The brightest H2_2CO maser component also shows a decrease in flux density and has a similar LSR velocity to the brightest H2_2O and 12.2\,GHz CH3_3OH masers. The line parameters of radio recombination lines and the 20.17 and 20.97\,GHz CH3_3OH transitions in NGC\,7538\,IRS\,1 are also reported. In addition, we observed five other 6\,cm formaldehyde maser regions. We found no evidence of significant variability of the 6\,cm masers in these regions with respect to previous observations, the only possible exception being the maser in G29.96-0.02. All six sources were also observed in the H213_2^{13}CO isotopologue transition of the 6\,cm H2_2CO line; H213_2^{13}CO absorption was detected in five of the sources. Estimated column density ratios [H212_2^{12}CO]/[H213_2^{13}CO] are reported.Comment: 29 pages, 9 figure

    Linear Parsing Expression Grammars

    Full text link
    PEGs were formalized by Ford in 2004, and have several pragmatic operators (such as ordered choice and unlimited lookahead) for better expressing modern programming language syntax. Since these operators are not explicitly defined in the classic formal language theory, it is significant and still challenging to argue PEGs' expressiveness in the context of formal language theory.Since PEGs are relatively new, there are several unsolved problems.One of the problems is revealing a subclass of PEGs that is equivalent to DFAs. This allows application of some techniques from the theory of regular grammar to PEGs. In this paper, we define Linear PEGs (LPEGs), a subclass of PEGs that is equivalent to DFAs. Surprisingly, LPEGs are formalized by only excluding some patterns of recursive nonterminal in PEGs, and include the full set of ordered choice, unlimited lookahead, and greedy repetition, which are characteristic of PEGs. Although the conversion judgement of parsing expressions into DFAs is undecidable in general, the formalism of LPEGs allows for a syntactical judgement of parsing expressions.Comment: Parsing expression grammars, Boolean finite automata, Packrat parsin

    Carbon in different phases ([CII], [CI], and CO) in infrared dark clouds: Cloud formation signatures and carbon gas fractions

    Get PDF
    Context: How do molecular clouds form out of the atomic phase? And what are the relative fractions of carbon in the ionized, atomic and molecular phase? These are questions at the heart of cloud and star formation. Methods: Using multiple observatories from Herschel and SOFIA to APEX and the IRAM 30m telescope, we mapped the ionized, atomic and molecular carbon ([CII]@1900GHz, [CI]@492GHz and C18O(2-1)@220GHz) at high spatial resolution (12"-25") in four young massive infrared dark clouds (IRDCs). Results: The three carbon phases were successfully mapped in all four regions, only in one source the [CII] line remained a non-detection. Both the molecular and atomic phases trace the dense structures well, with [CI] also tracing material at lower column densities. [CII] exhibits diverse morphologies in our sample, from compact to diffuse structures probing the cloud environment. In at least two out of the four regions, we find kinematic signatures strongly indicating that the dense gas filaments have formed out of a dynamically active and turbulent atomic/molecular cloud, potentially from converging gas flows. The atomic-to-molecular carbon gas mass ratios are low between 7% and 12% with the lowest values found toward the most quiescent region. In the three regions where [CII] is detected, its mass is always higher by a factor of a few than that of the atomic carbon. The ionized carbon emission depends as well on the radiation field, however, we also find strong [CII] emission in a region without significant external sources, indicating that other processes, e.g., energetic gas flows can contribute to the [CII] excitation as well.Comment: 15 pages, 18 figures, accepted by Astronomy & Astrophysics, a higher resolution version can be found at http://www.mpia.de/homes/beuther/papers.htm

    Deeply embedded objects and shocked molecular hydrogen: The environment of the FU Orionis stars RNO 1B/1C

    Get PDF
    We present Spitzer IRAC and IRS observations of the dark cloud L1287. The mid-infrared (MIR) IRAC images show deeply embedded infrared sources in the vicinity of the FU Orionis objects RNO 1B and RNO 1C suggesting their association with a small young stellar cluster. For the first time we resolve the MIR point source associated with IRAS 00338+6312 which is a deeply embedded intermediate-mass protostar driving a known molecular outflow. The IRAC colors of all objects are consistent with young stars ranging from deeply embedded Class 0/I sources to Class II objects, part of which appear to be locally reddened. The two IRS spectra show strong absorption bands by ices and dust particles, confirming that the circumstellar environment around RNO 1B/1C has a high optical depth. Additional hydrogen emission lines from pure rotational transitions are superimposed on the spectra. Given the outflow direction, we attribute these emission lines to shocked gas in the molecular outflow powered by IRAS 00338+6312. The derived shock temperatures are in agreement with high velocity C-type shocks

    Influence of the Dufour effect on convection in binary gas mixtures

    Full text link
    Linear and nonlinear properties of convection in binary fluid layers heated from below are investigated, in particular for gas parameters. A Galerkin approximation for realistic boundary conditions that describes stationary and oscillatory convection in the form of straight parallel rolls is used to determine the influence of the Dufour effect on the bifurcation behaviour of convective flow intensity, vertical heat current, and concentration mixing. The Dufour--induced changes in the bifurcation topology and the existence regimes of stationary and traveling wave convection are elucidated. To check the validity of the Galerkin results we compare with finite--difference numerical simulations of the full hydrodynamical field equations. Furthermore, we report on the scaling behaviour of linear properties of the stationary instability.Comment: 14 pages and 10 figures as uuencoded Postscript file (using uufiles

    The Relationship between Age of Air and the Diabatic Circulation of the Stratosphere

    Get PDF
    The strength of the Brewer–Dobson circulation is difficult to estimate using observations. Trends in the age of stratospheric air, deduced from observations of transient tracers, have been used to identify trends in the circulation, but there are ambiguities in the relationship between age and the strength of the circulation. This paper presents a steady-state theory and a time-dependent extension to relate age of air directly to the diabatic circulation of the stratosphere. In steady state, it is the difference between the age of upwelling and downwelling air through an isentrope and not the absolute value of age that is a measure of the strength of the diabatic circulation through that isentrope. For the time-varying case, expressions for other terms that contribute to the age budget are derived. An idealized atmospheric general circulation model with and without a seasonal cycle is used to test the time-dependent theory and to find that these additional terms are small upon annual averaging. The steady-state theory holds as well for annual averages of a seasonally varying model as for a perpetual-solstice model. These results are a step toward using data to quantify the strength of the diabatic circulation.National Science Foundation (U.S.) (AGS-1547733

    Mid-infrared interferometry of massive young stellar objects. I. VLTI and Subaru observations of the enigmatic object M8E-IR

    Get PDF
    [abridged] Our knowledge of the inner structure of embedded massive young stellar objects is still quite limited. We attempt here to overcome the spatial resolution limitations of conventional thermal infrared imaging. We employed mid-infrared interferometry using the MIDI instrument on the ESO/VLTI facility to investigate M8E-IR, a well-known massive young stellar object suspected of containing a circumstellar disk. Spectrally dispersed visibilities in the 8-13 micron range were obtained at seven interferometric baselines. We resolve the mid-infrared emission of M8E-IR and find typical sizes of the emission regions of the order of 30 milli-arcseconds (~45 AU). Radiative transfer simulations have been performed to interpret the data. The fitting of the spectral energy distribution, in combination with the measured visibilities, does not provide evidence for an extended circumstellar disk with sizes > 100 AU but requires the presence of an extended envelope. The data are not able to constrain the presence of a small-scale disk in addition to an envelope. In either case, the interferometry measurements indicate the existence of a strongly bloated, relatively cool central object, possibly tracing the recent accretion history of M8E-IR. In addition, we present 24.5 micron images that clearly distinguish between M8E-IR and the neighbouring ultracompact HII region and which show the cometary-shaped infrared morphology of the latter source. Our results show that IR interferometry, combined with radiative transfer modelling, can be a viable tool to reveal crucial structure information on embedded massive young stellar objects and to resolve ambiguities arising from fitting the SED.Comment: 7 pages, 5 figures, accepted for publication in A&A, new version after language editing, one important reference added, conclusions unchange

    A New Galactic 6cm Formaldehyde Maser

    Full text link
    We report the detection of a new H2CO maser in the massive star forming region G23.71-0.20 (IRAS 18324-0820), i.e., the fifth region in the Galaxy where H2CO maser emission has been found. The new H2CO maser is located toward a compact HII region, and is coincident in velocity and position with 6.7 GHz methanol masers and with an IR source as revealed by Spitzer/IRAC GLIMPSE data. The coincidence with an IR source and 6.7 GHz methanol masers suggests that the maser is in close proximity to an embedded massive protostar. Thus, the detection of H2CO maser emission toward G23.71-0.20 supports the trend that H2CO 6cm masers trace molecular material very near young massive stellar objects.Comment: Accepted for publication in The Astrophysical Journal Letter

    An H2CO 6cm Maser Pinpointing a Possible Circumstellar Torus in IRAS18566+0408

    Get PDF
    We report observations of 6cm, 3.6cm, 1.3cm, and 7mm radio continuum, conducted with the Very Large Array towards IRAS18566+0408, one of the few sources known to harbor H2CO 6cm maser emission. Our observations reveal that the emission is dominated by an ionized jet at cm wavelengths. Spitzer/IRAC images from GLIMPSE support this interpretation, given the presence of 4.5um excess emission at approximately the same orientation as the cm continuum. The 7mm emission is dominated by thermal dust from a flattened structure almost perpendicular to the ionized jet, thus, the 7mm emission appears to trace a torus associated with a young massive stellar object. The H2CO 6cm maser is coincident with the center of the torus-like structure. Our observations rule out radiative pumping via radio continuum as the excitation mechanism for the H2CO 6cm maser in IRAS18566+0408.Comment: 20 pages, 4 figures, ApJ (in press
    corecore